20 research outputs found

    Artificial intelligence applications in cardio-oncology: Leveraging high dimensional cardiovascular data

    Get PDF
    Growing evidence suggests a wide spectrum of potential cardiovascular complications following cancer therapies, leading to an urgent need for better risk-stratifying and disease screening in patients undergoing oncological treatment. As many cancer patients undergo frequent surveillance through imaging as well as other diagnostic testing, there is a wealth of information that can be utilized to assess one's risk for cardiovascular complications of cancer therapies. Over the past decade, there have been remarkable advances in applying artificial intelligence (AI) to analyze cardiovascular data obtained from electrocardiograms, echocardiograms, computed tomography, and cardiac magnetic resonance imaging to detect early signs or future risk of cardiovascular diseases. Studies have shown AI-guided cardiovascular image analysis can accurately, reliably and inexpensively identify and quantify cardiovascular risk, leading to better detection of at-risk or disease features, which may open preventive and therapeutic opportunities in cardio-oncology. In this perspective, we discuss the potential for the use of AI in analyzing cardiovascular data to identify cancer patients at risk for cardiovascular complications early in treatment which would allow for rapid intervention to prevent adverse cardiovascular outcomes

    Noninvasive Assessment of Complexity of Atrial Fibrillation Correlation With Contact Mapping and Impact of Ablation

    Full text link
    [EN] Background: It is difficult to noninvasively phenotype atrial fibrillation (AF) in a way that reflects clinical end points such as response to therapy. We set out to map electrical patterns of disorganization and regions of reentrant activity in AF from the body surface using electrocardiographic imaging, calibrated to panoramic intracardiac recordings and referenced to AF termination by ablation. Methods: Bi-atrial intracardiac electrograms of 47 patients with AF at ablation (30 persistent, 29 male, 63 +/- 9 years) were recorded with 64-pole basket catheters and simultaneous 57-lead body surface ECGs. Atrial epicardial electrical activity was reconstructed and organized sites were invasively and noninvasively tracked in 3-dimension using phase singularity. In a subset of 17 patients, sites of AF organization were targeted for ablation. Results: Body surface mapping showed greater AF organization near intracardially detected drivers than elsewhere, both in phase singularity density (2.3 +/- 2.1 versus 1.9 +/- 1.6; P=0.02) and number of drivers (3.2 +/- 2.3 versus 2.7 +/- 1.7; P=0.02). Complexity, defined as the number of stable AF reentrant sites, was concordant between noninvasive and invasive methods (r(2)=0.5; CC=0.71). In the subset receiving targeted ablation, AF complexity showed lower values in those in whom AF terminated than those in whom AF did not terminate (P<0.01). Conclusions: AF complexity tracked noninvasively correlates well with organized and disorganized regions detected by panoramic intracardiac mapping and correlates with the acute outcome by ablation. This approach may assist in bedside monitoring of therapy or in improving the efficacy of ongoing ablation procedures.This article was supported in part by: Instituto de Salud Carlos III FEDER (Fondo Europeo de Desarrollo Regional; IJCI-2014-22178, DTS16/00160; PI14/00857, PI16/01123; PI17/01059; PI17/01106), Generalitat Valenciana Grants (APOSTD/2017 and APOSTD/2018) and projects (GVA/2018/103); National Institutes of Health (Dr Narayan: R01 HL85537; K24 HL103800); EITHealth 19600 AFFINE.Rodrigo Bort, M.; Martínez Climent, BA.; Hernández-Romero, I.; Liberos Mascarell, A.; Baykaner, T.; Rogers, AJ.; Alhusseini, M.... (2020). Noninvasive Assessment of Complexity of Atrial Fibrillation Correlation With Contact Mapping and Impact of Ablation. Circulation Arrhythmia and Electrophysiology. 13(3):236-246. https://doi.org/10.1161/CIRCEP.119.007700S236246133Calkins H Hindricks G Cappato R Kim YH Saad EB Aguinaga L Akar JG Badhwar VBrugada J Camm J etal 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensusstatement on catheter and surgical ablation of atrial fibrillation: Executive summary. J Arrhythm.2017;33:369-409Narayan SM Krummen DE Clopton P Shivkumar K Miller JM. Direct or coincidentalelimination of stable rotors or focal sources may explain successful atrial fibrillation ablation:on-treatment analysis of the CONFIRM trial (Conventional ablation for AF with or without focalHaissaguerre M Hocini M Denis A Shah AJ Komatsu Y Yamashita S Daly M Amraoui SZellerhoff S Picat MQ etal. Driver domains in persistent atrial fibrillation. Circulation.2014;130:530-8.Atienza F Almendral J Ormaetxe JM Moya A Martínez-Alday JD Hernández-Madrid ACastellanos E Arribas F Arias MÁ Tercedor L etal. Comparison of radiofrequency catheterablation of drivers and circumferential pulmonary vein isolation in atrial fibrillation: aAtienza, F., Almendral, J., Ormaetxe, J. M., Moya, Á., Martínez-Alday, J. D., Hernández-Madrid, A., … Jalife, J. (2014). Comparison of Radiofrequency Catheter Ablation of Drivers and Circumferential Pulmonary Vein Isolation in Atrial Fibrillation. Journal of the American College of Cardiology, 64(23), 2455-2467. doi:10.1016/j.jacc.2014.09.053Seitz J Bars C Théodore G Beurtheret S Lellouche N Bremondy M Ferracci A Faure JPenaranda G Yamazaki M etal. AF Ablation Guided by Spatiotemporal ElectrogramDispersion Without Pulmonary Vein Isolation: A Wholly Patient-Tailored Approach. J Am CollGuillem MS Climent AM Millet J Arenal Á Fernández-Avilés F Jalife J Atienza FBerenfeld O. Noninvasive localization of maximal frequency sites of atrial fibrillation by bodysurface potential mapping. Circ Arrhythm Electrophysiol. 2013;6:294-301.Ramirez FD Birnie DH Nair GM Szczotka A Redpath CJ Sadek MM Nery PB. Efficacyand safety of driver-guided catheter ablation for atrial fibrillation: A systematic review and metaRamirez, F. D., Birnie, D. H., Nair, G. M., Szczotka, A., Redpath, C. J., Sadek, M. M., & Nery, P. B. (2017). Efficacy and safety of driver-guided catheter ablation for atrial fibrillation: A systematic review and meta-analysis. Journal of Cardiovascular Electrophysiology, 28(12), 1371-1378. doi:10.1111/jce.13313Baykaner T Rogers AJ Meckler GL Zaman J Navara R Rodrigo M Alhusseini MKowalewski CAB Viswanathan MN Narayan SM etal. Clinical Implications of Ablation ofDrivers for Atrial Fibrillation: A Systematic Review and Meta-Analysis. Circ ArrhythmBrachmann J Hummel JD Wilber DJ Sarver AE Rapkin J Shpun S Szili-Torok T.Prospective randomized comparison of rotor ablation vs. conventional ablation for treatment ofVijayakumar R Vasireddi SK Cuculich PS Faddis MN Rudy Y. MethodologyConsiderations in Phase Mapping of Human Cardiac Arrhythmias. Circ ArrhythmAlhusseini M Vidmar D Meckler GL Kowalewski CA Shenasa F Wang PJ Narayan SMRappel WJ. Two Independent Mapping Techniques Identify Rotational Activity Patterns at Sitesof Local Termination During Persistent Atrial Fibrillation. J Cardiovasc Electrophysiol.2017;28:615-622.Miller JM Kalra V Das MK Jain R Garlie JB Brewster JA Dandamudi G. Clinical Benefitof Ablating Localized Sources for Human Atrial Fibrillation: The Indiana University FIRMZaman JAB Baykaner T Clopton P Swarup V Kowal RC Daubert JP Day JD Hummel JSchricker AA Krummen DE etal. Recurrent Post-Ablation Paroxysmal Atrial FibrillationShares Substrates With Persistent Atrial Fibrillation: An 11-Center Study. JACC ClinYushkevich PA Zhang H Gee JC. Continuous medial representation for anatomicalstructures. IEEE Trans Med Imaging. 2006;25:1547-64.Remondino F. 3-D reconstruction of static human body shape from image sequence.Remondino, F. (2004). 3-D reconstruction of static human body shape from image sequence. Computer Vision and Image Understanding, 93(1), 65-85. doi:10.1016/j.cviu.2003.08.006Eggert DW Lorusso A Fish RB. Estimating 3-D rigid body transformations: a comparisonRodrigo M Guillem MS Climent AM Pedrón-Torrecilla J Liberos A Millet J FernándezRodrigo, M., Guillem, M. S., Climent, A. M., Pedrón-Torrecilla, J., Liberos, A., Millet, J., … Berenfeld, O. (2014). Body surface localization of left and right atrial high-frequency rotors in atrial fibrillation patients: A clinical-computational study. Heart Rhythm, 11(9), 1584-1591. doi:10.1016/j.hrthm.2014.05.013Rodrigo M Climent AM Liberos A Fernández-Avilés F Berenfeld O Atienza F GuillemMS. Highest dominant frequency and rotor positions are robust markers of driver location duringMS. Technical Considerations on Phase Mapping for Identification of Atrial Reentrant Activityin Direct- and Inverse-Computed Electrograms. Circ Arrhythm Electrophysiol.2017;10:e005008.Castells F Mora C Rieta JJ Moratal-Pérez D Millet J. Estimation of atrial fibrillatory wavefrom single-lead atrial fibrillation electrocardiograms using principal component analysisconcepts. Med Biol Eng Comput. 2005;43:557-560.Rodrigo M Climent AM Liberos A Hernandez-Romero I Arenal A Bermejo J FernandezAviles F Atienza F Guillem MS. Solving Inaccuracies in Anatomical Models forElectrocardiographic Inverse Problem Resolution by Maximizing Reconstruction Quality. IEEERodrigo, M., Climent, A. M., Liberos, A., Hernandez-Romero, I., Arenal, A., Bermejo, J., … Guillem, M. S. (2018). Solving Inaccuracies in Anatomical Models for Electrocardiographic Inverse Problem Resolution by Maximizing Reconstruction Quality. IEEE Transactions on Medical Imaging, 37(3), 733-740. doi:10.1109/tmi.2017.2707413Honarbakhsh S Schilling RJ Providência R Dhillon G Sawhney V Martin CA Keating EFinlay M Ahsan S Chow A etal. Panoramic atrial mapping with basket catheters: Aquantitative analysis to optimize practice patient selection and catheter choice. J CardiovascElectrophysiol. 201;28:1423-1432Knecht S Sohal M Deisenhofer I Albenque JP Arentz T Neumann T Cauchemez BDuytschaever M Ramoul K Verbeet T etal. Multicentre evaluation of non-invasive biatrialmapping for persistent atrial fibrillation ablation: the AFACART study. Europace.2017;19:1302-1309.Metzner A Wissner E Tsyganov A Kalinin V Schlüter M Lemes C Mathew S Maurer THeeger CH Reissmann B etal. Noninvasive phase mapping of persistent atrial fibrillation inhumans: Comparison with invasive catheter mapping. Ann Noninvasive Electrocardiol.2018;23:e12527.Duchateau J Sacher F Pambrun T Derval N Chamorro-Servent J Denis A Ploux S HociniM Jaïs P Bernus O etal. Performance and limitations of noninvasive cardiac activationDuchateau, J., Sacher, F., Pambrun, T., Derval, N., Chamorro-Servent, J., Denis, A., … Dubois, R. (2019). Performance and limitations of noninvasive cardiac activation mapping. Heart Rhythm, 16(3), 435-442. doi:10.1016/j.hrthm.2018.10.010Rudy Y. Letter to the Editor-ECG imaging and activation mapping. Heart Rhythm. 2019;16:e50-e.Podziemski P Zeemering S Kuklik P van Hunnik A Maesen B Maessen J Crijns HJWillems S Verma A Betts TR Murray S Neuzil P Ince H Steven D Sultan A Heck PMHall MC etal. Targeting Nonpulmonary Vein Sources in Persistent Atrial Fibrillation IdentifiedLim HS Hocini M Dubois R Denis A Derval N Zellerhoff S Yamashita S Berte BMahida S Komatsu Y etal. Complexity and Distribution of Drivers in Relation to Duration ofCamm AJ Breithardt G Crijns H Dorian P Kowey P Le Heuzey JY Merioua I PedrazziniL Prystowsky EN Schwartz PJ etal. Real-life observations of clinical outcomes with rhythmand rate-control therapies for atrial fibrillation RECORDAF (Registry on Cardiac RhythmCamm, A. J., Breithardt, G., Crijns, H., Dorian, P., Kowey, P., Le Heuzey, J.-Y., … Weintraub, W. (2011). Real-Life Observations of Clinical Outcomes With Rhythm- and Rate-Control Therapies for Atrial Fibrillation. Journal of the American College of Cardiology, 58(5), 493-501. doi:10.1016/j.jacc.2011.03.034Kowalewski CAB Shenasa F Rodrigo M Clopton P Meckler G Alhusseini MI SwerdlowMA Joshi V Hossainy S Zaman JAB etal. Interaction of Localized Drivers and DisorganizedActivation in Persistent Atrial Fibrillation: Reconciling Putative Mechanisms Using MultipleChelu MG King JB Kholmovski EG Ma J Gal P Marashly Q AlJuaid MA Kaur G SilverMA Johnson KA etal. Atrial Fibrosis by Late Gadolinium Enhancement Magnetic ResonanceImaging and Catheter Ablation of Atrial Fibrillation: 5-Year Follow-Up Data. J Am Heart Assoc.2018;7:e006313.Guillem MS Bollmann A Climent AM Husser D Millet-Roig J Castells F. How manyleads are necessary for a reliable reconstruction of surface potentials during atrial fibrillation?De la Salud Guillem, M., Bollmann, A., Climent, A. M., Husser, D., Millet-Roig, J., & Castells, F. (2009). How Many Leads Are Necessary for a Reliable Reconstruction of Surface Potentials During Atrial Fibrillation? IEEE Transactions on Information Technology in Biomedicine, 13(3), 330-340. doi:10.1109/titb.2008.2011894Rodrigo M Climent AM Liberos A Fernández-Aviles F Atienza F Guillem MS BerenfeldO. Minimal configuration of body surface potential mapping for discrimination of left versu

    Initial Independent Outcomes from Focal Impulse and Rotor Modulation Ablation for Atrial Fibrillation: Multicenter FIRM Registry

    Get PDF
    Introduction The success of pulmonary vein isolation (PVI) for atrial fibrillation (AF) may be improved if stable AF sources identified by Focal Impulse and Rotor Mapping (FIRM) are also eliminated. The long-term results of this approach are unclear outside the centers where FIRM was developed; thus, we assessed outcomes of FIRM-guided AF ablation in the first cases at 10 experienced centers. Methods We prospectively enrolled n = 78 consecutive patients (61 ± 10 years) undergoing FIRM guided ablation for persistent (n = 48), longstanding persistent (n = 7), or paroxysmal (n = 23) AF. AF recordings from both atria with a 64-pole basket catheter were analyzed using a novel mapping system (Rhythm View™; Topera Inc., CA, USA). Identified rotors/focal sources were ablated, followed by PVI. Results Each institution recruited a median of 6 patients, each of whom showed 2.3 ± 0.9 AF rotors/focal sources in diverse locations. 25.3% of all sources were right atrial (RA), and 50.0% of patients had ≥1 RA source. Ablation of all sources required a total of 16.6 ± 11.7 minutes, followed by PVI. On >1 year follow-up with a 3-month blanking period, 1 patient lost to follow-up (median time to 1st recurrence: 245 days, IQR 145–354), single-procedure freedom from AF was 87.5% (patients without prior ablation; 35/40) and 80.5% (all patients; 62/77) and similar for persistent and paroxysmal AF (P = 0.89). Conclusions Elimination of patient-specific AF rotors/focal sources produced freedom-from-AF of ≈80% at 1 year at centers new to FIRM. FIRM-guided ablation has a rapid learning curve, yielding similar results to original FIRM reports in each center’s first cases

    Ablation of rotor and focal sources reduces late recurrence of atrial fibrillation compared with trigger ablation alone: extended follow-up of the CONFIRM trial (Conventional Ablation for Atrial Fibrillation With or Without Focal Impulse and Rotor Modulation).

    Get PDF
    ObjectivesThe aim of this study was to determine if ablation that targets patient-specific atrial fibrillation (AF)-sustaining substrates (rotors or focal sources) is more durable than trigger ablation alone at preventing late AF recurrence.BackgroundLate recurrence substantially limits the efficacy of pulmonary vein isolation for AF and is associated with pulmonary vein reconnection and the emergence of new triggers.MethodsThree-year follow-up was performed of the CONFIRM (Conventional Ablation for Atrial Fibrillation With or Without Focal Impulse and Rotor Modulation) trial, in which 92 consecutive patients with AF (70.7% persistent) underwent novel computational mapping. Ablation comprised source (focal impulse and rotor modulation [FIRM]) and then conventional ablation in 27 patients (FIRM guided) and conventional ablation alone in 65 patients (FIRM blinded). Patients were followed with implanted electrocardiographic monitors when possible (85.2% of FIRM-guided patients, 23.1% of FIRM-blinded patients).ResultsFIRM mapping revealed a median of 2 (interquartile range: 1 to 2) rotors or focal sources in 97.7% of patients during AF. During a median follow-up period of 890 days (interquartile range: 224 to 1,563 days), compared to FIRM-blinded therapy, patients receiving FIRM-guided ablation maintained higher freedom from AF after 1.2 ± 0.4 procedures (median 1; interquartile range: 1 to 1) (77.8% vs. 38.5%, p = 0.001) and a single procedure (p &lt; 0.001) and higher freedom from all atrial arrhythmias (p = 0.003). Freedom from AF was higher when ablation directly or coincidentally passed through sources than when it missed sources (p &lt; 0.001).ConclusionsFIRM-guided ablation is more durable than conventional trigger-based ablation in preventing 3-year AF recurrence. Future studies should investigate how ablation of patient-specific AF-sustaining rotors and focal sources alters the natural history of arrhythmia recurrence. (The Dynamics of Human Atrial Fibrillation; NCT01008722)

    Machine Learning to Classify Intracardiac Electrical Patterns During Atrial Fibrillation

    No full text
    BACKGROUND: Advances in ablation for atrial fibrillation (AF) continue to be hindered by ambiguities in mapping, even between experts. We hypothesized that convolutional neural networks (CNN) may enable objective analysis of intracardiac activation in AF, which could be applied clinically if CNN classifications could also be explained. METHODS: We performed panoramic recording of bi-atrial electrical signals in AF. We used the Hilbert-transform to produce 175 000 image grids in 35 patients, labeled for rotational activation by experts who showed consistency but with variability (kappa [κ]=0.79). In each patient, ablation terminated AF. A CNN was developed and trained on 100 000 AF image grids, validated on 25 000 grids, then tested on a separate 50 000 grids. RESULTS: In the separate test cohort (50 000 grids), CNN reproducibly classified AF image grids into those with/without rotational sites with 95.0% accuracy (CI, 94.8%-95.2%). This accuracy exceeded that of support vector machines, traditional linear discriminant, and k-nearest neighbor statistical analyses. To probe the CNN, we applied gradient-weighted class activation mapping which revealed that the decision logic closely mimicked rules used by experts (C statistic 0.96). CONCLUSIONS: CNNs improved the classification of intracardiac AF maps compared with other analyses and agreed with expert evaluation. Novel explainability analyses revealed that the CNN operated using a decision logic similar to rules used by experts, even though these rules were not provided in training. We thus describe a scaleable platform for robust comparisons of complex AF data from multiple systems, which may provide immediate clinical utility to guide ablation. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT02997254. Graphic Abstract: A graphic abstract is available for this article

    Multicentre safety of adding Focal Impulse and Rotor Modulation (FIRM) to conventional ablation for atrial fibrillation

    No full text
    Aims Focal Impulse and Rotor Modulation (FIRM) uses 64-electrode basket catheters to identify atrial fibrillation (AF)-sustaining sites for ablation, with promising results in many studies. Accordingly, new basket designs are being tested by several groups. We set out to determine the procedural safety of adding basket mapping and map-guided ablation to conventional pulmonary vein isolation (PVI). Methods and results We collected 30 day procedural safety data in five US centres for consecutive patients undergoing FIRM plus PVI (FIRM-PVI) compared with contemporaneous controls undergoing PVI without FIRM. A total of 625 cases were included in this analysis: 325 FIRM-PVI and 300 PVI-controls. FIRM-PVI patients were more likely than PVI-controls to be male (83% vs. 66%, P < 0.001) and have long-standing persistent AF (26% vs. 13%, P < 0.001) reflecting patients referred for FIRM. Total ablation time was greater for FIRM-PVI (62 ± 22 min) vs. PVI-controls (52 ± 18 min, P = 0.03). The complication rate for FIRM-PVI procedures (4.3%) was similar to controls (4.0%, P = 1) for both major and minor complications; no deaths were reported. The rate of complications potentially attributable to the basket catheter was small and did not differ between basket types (Constellation 2.8% vs. FIRMap 1.8%, P = 0.7) or between cases in which basket catheters were and were not used (P = 0.5). Complication rates did not differ between centres (P = 0.6). Conclusions Procedural complications from the use of the basket catheters for AF mapping are low, and thus procedural safety appears similar between FIRM-PVI and PVI-controls in a large multicentre cohort. Future studies are required to determine the optimal approach to maximize the efficacy of FIRM-guided ablation
    corecore